This PR contains the following updates: | Package | Type | Update | Change | |---|---|---|---| | [numpy](https://github.com/numpy/numpy) ([changelog](https://numpy.org/doc/stable/release)) | project.dependencies | patch | `==2.2.2` -> `==2.2.4` | --- ### Release Notes <details> <summary>numpy/numpy (numpy)</summary> ### [`v2.2.4`](https://github.com/numpy/numpy/releases/tag/v2.2.4): 2.2.4 (Mar 16, 2025) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.3...v2.2.4) ### NumPy 2.2.4 Release Notes NumPy 2.2.4 is a patch release that fixes bugs found after the 2.2.3 release. There are a large number of typing improvements, the rest of the changes are the usual mix of bugfixes and platform maintenace. This release supports Python versions 3.10-3.13. #### Contributors A total of 15 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Abhishek Kumar - Andrej Zhilenkov - Andrew Nelson - Charles Harris - Giovanni Del Monte - Guan Ming(Wesley) Chiu + - Jonathan Albrecht + - Joren Hammudoglu - Mark Harfouche - Matthieu Darbois - Nathan Goldbaum - Pieter Eendebak - Sebastian Berg - Tyler Reddy - lvllvl + #### Pull requests merged A total of 17 pull requests were merged for this release. - [#​28333](https://github.com/numpy/numpy/pull/28333): MAINT: Prepare 2.2.x for further development. - [#​28348](https://github.com/numpy/numpy/pull/28348): TYP: fix positional- and keyword-only params in astype, cross... - [#​28377](https://github.com/numpy/numpy/pull/28377): MAINT: Update FreeBSD version and fix test failure - [#​28379](https://github.com/numpy/numpy/pull/28379): BUG: numpy.loadtxt reads only 50000 lines when skip_rows >= max_rows - [#​28385](https://github.com/numpy/numpy/pull/28385): BUG: Make np.nonzero threading safe - [#​28420](https://github.com/numpy/numpy/pull/28420): BUG: safer bincount casting (backport to 2.2.x) - [#​28422](https://github.com/numpy/numpy/pull/28422): BUG: Fix building on s390x with clang - [#​28423](https://github.com/numpy/numpy/pull/28423): CI: use QEMU 9.2.2 for Linux Qemu tests - [#​28424](https://github.com/numpy/numpy/pull/28424): BUG: skip legacy dtype multithreaded test on 32 bit runners - [#​28435](https://github.com/numpy/numpy/pull/28435): BUG: Fix searchsorted and CheckFromAny byte-swapping logic - [#​28449](https://github.com/numpy/numpy/pull/28449): BUG: sanity check `__array_interface__` number of dimensions - [#​28510](https://github.com/numpy/numpy/pull/28510): MAINT: Hide decorator from pytest traceback - [#​28512](https://github.com/numpy/numpy/pull/28512): TYP: Typing fixes backported from [#​28452](https://github.com/numpy/numpy/issues/28452), [#​28491](https://github.com/numpy/numpy/issues/28491), [#​28494](https://github.com/numpy/numpy/issues/28494) - [#​28521](https://github.com/numpy/numpy/pull/28521): TYP: Backport fixes from [#​28505](https://github.com/numpy/numpy/issues/28505), [#​28506](https://github.com/numpy/numpy/issues/28506), [#​28508](https://github.com/numpy/numpy/issues/28508), and [#​28511](https://github.com/numpy/numpy/issues/28511) - [#​28533](https://github.com/numpy/numpy/pull/28533): TYP: Backport typing fixes from main (2) - [#​28534](https://github.com/numpy/numpy/pull/28534): TYP: Backport typing fixes from main (3) - [#​28542](https://github.com/numpy/numpy/pull/28542): TYP: Backport typing fixes from main (4) #### Checksums ##### MD5 935928cbd2de140da097f6d5f4a01d72 numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl bf7fd01bb177885e920173b610c195d9 numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl 826e52cd898567a0c446113ab7a7b362 numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl 9982a91d7327aea541c24aff94d3e462 numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl 5bdf5b63f4ee01fa808d13043b2a2275 numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 677b3031105e24eaee2e0e57d7c2a306 numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d857867787fe1eb236670e7fdb25f414 numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl a5aff3a7eb2923878e67fbe1cd04a9e9 numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl e00bd3ac85d8f34b46b7f97a8278aeb3 numpy-2.2.4-cp310-cp310-win32.whl e5cb2a5d14bccee316bb73173be125ec numpy-2.2.4-cp310-cp310-win_amd64.whl 494f60d8e1c3500413bd093bb3f486ea numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl a886a9f3e80a60ce6ba95b431578bbca numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl 889f3b507bab9272d9b549780840a642 numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl 059788668d2c4e9aace4858e77c099ed numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl db9ae978afb76a4bf79df0657a66aaeb numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e36963a4c177157dc7b0775c309fa5a8 numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3603e683878b74f38e5617f04ff6a369 numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl afbc410fb9b42b19f4f7c81c21d6777f numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl 33ff8081378188894097942f80c33e26 numpy-2.2.4-cp311-cp311-win32.whl 5b11fe8d26318d85e0bc577a654f6643 numpy-2.2.4-cp311-cp311-win_amd64.whl 91121787f396d3e98210de8b617e5d48 numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl c524d1020b4652aacf4477d1628fa1ba numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl eb08f551bdd6772155bb39ac0da47479 numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl 7cb37fc9145d0ebbea5666b4f9ed1027 numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl c4452a5dc557c291904b5c51a4148237 numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bd23a12ead870759f264160ab38b2c9d numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 07b44109381985b48d1eef80feebc5ad numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl 95f1a27d33106fa9f40ee0714681c840 numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl 507e550a55b19dedf267b58a487ba0bc numpy-2.2.4-cp312-cp312-win32.whl be21ccbf8931e92ba1fdb2dc1250bf2a numpy-2.2.4-cp312-cp312-win_amd64.whl e94003c2b65d81b00203711c5c42fb8e numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl cf781fd5412ffd826e0436883452cc17 numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl 92c9a30386a64f2deddad1db742bd296 numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl 7fd16554fa0a15b7f99b1fabf1c4592c numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl 9293b0575a902b2d55c35567dee7679e numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9970699bd95e8a64a562b1e6328b83d0 numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e8597c611a919a8e88229d6889c1f86e numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl 329288501f012606605bdbed368e58e9 numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl 04bf8d0f6a9e279ab01df4ed0b4aeee1 numpy-2.2.4-cp313-cp313-win32.whl 66801fe84a436b7ed3be6e0082b86917 numpy-2.2.4-cp313-cp313-win_amd64.whl 3e2f31e01b45cd16a87b794477de3714 numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl 7504018213a3a8fea7173e2c1d0fcfd1 numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl e299021397c3cdb941b7ffe77cf0fefe numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl 1cc2731a246079bcab361179f38e7ccb numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl e6eccf936d25c9eda9df1a4d50ae2fdc numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ba825efd05cca6d56c3dca9f7f1f88e7 numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 369eebec47c9c27cb4841a13e9522167 numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl 554dbfa52988d01f715cbe8d4da4b409 numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl 811d25a008c68086c9382487e9a4127a numpy-2.2.4-cp313-cp313t-win32.whl 893fd2fdd42f386e300bee885bbb7778 numpy-2.2.4-cp313-cp313t-win_amd64.whl 65e284546c5ee575eca0a3726c0a1d98 numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl e4e73511eac8f1a10c6abbd6fa2fa0aa numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl a884ed5263b91fa87b5e3d14caf955a5 numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7330087a6ad1527ae20a495e2fb3b357 numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl 56232f4a69b03dd7a87a55fffc5f2ebc numpy-2.2.4.tar.gz ##### SHA256 8146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9 numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl e642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl a84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775 numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl 4ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9 numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl 7716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2 numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl adf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020 numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3 numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl df2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017 numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl a0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a numpy-2.2.4-cp310-cp310-win32.whl 0d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542 numpy-2.2.4-cp310-cp310-win_amd64.whl e9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4 numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl 9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4 numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl bd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl cf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880 numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl 2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1 numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5 numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687 numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl db1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6 numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl ea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09 numpy-2.2.4-cp311-cp311-win32.whl f7de08cbe5551911886d1ab60de58448c6df0f67d9feb7d1fb21e9875ef95e91 numpy-2.2.4-cp311-cp311-win_amd64.whl a7b9084668aa0f64e64bd00d27ba5146ef1c3a8835f3bd912e7a9e01326804c4 numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl dbe512c511956b893d2dacd007d955a3f03d555ae05cfa3ff1c1ff6df8851854 numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl bb649f8b207ab07caebba230d851b579a3c8711a851d29efe15008e31bb4de24 numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl f34dc300df798742b3d06515aa2a0aee20941c13579d7a2f2e10af01ae4901ee numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl c3f7ac96b16955634e223b579a3e5798df59007ca43e8d451a0e6a50f6bfdfba numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4f92084defa704deadd4e0a5ab1dc52d8ac9e8a8ef617f3fbb853e79b0ea3592 numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7a4e84a6283b36632e2a5b56e121961f6542ab886bc9e12f8f9818b3c266bfbb numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl 11c43995255eb4127115956495f43e9343736edb7fcdb0d973defd9de14cd84f numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl 65ef3468b53269eb5fdb3a5c09508c032b793da03251d5f8722b1194f1790c00 numpy-2.2.4-cp312-cp312-win32.whl 2aad3c17ed2ff455b8eaafe06bcdae0062a1db77cb99f4b9cbb5f4ecb13c5146 numpy-2.2.4-cp312-cp312-win_amd64.whl 1cf4e5c6a278d620dee9ddeb487dc6a860f9b199eadeecc567f777daace1e9e7 numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl 1974afec0b479e50438fc3648974268f972e2d908ddb6d7fb634598cdb8260a0 numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl 79bd5f0a02aa16808fcbc79a9a376a147cc1045f7dfe44c6e7d53fa8b8a79392 numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl 3387dd7232804b341165cedcb90694565a6015433ee076c6754775e85d86f1fc numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl 6f527d8fdb0286fd2fd97a2a96c6be17ba4232da346931d967a0630050dfd298 numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bce43e386c16898b91e162e5baaad90c4b06f9dcbe36282490032cec98dc8ae7 numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 31504f970f563d99f71a3512d0c01a645b692b12a63630d6aafa0939e52361e6 numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl 81413336ef121a6ba746892fad881a83351ee3e1e4011f52e97fba79233611fd numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl f486038e44caa08dbd97275a9a35a283a8f1d2f0ee60ac260a1790e76660833c numpy-2.2.4-cp313-cp313-win32.whl 207a2b8441cc8b6a2a78c9ddc64d00d20c303d79fba08c577752f080c4007ee3 numpy-2.2.4-cp313-cp313-win_amd64.whl 8120575cb4882318c791f839a4fd66161a6fa46f3f0a5e613071aae35b5dd8f8 numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl a761ba0fa886a7bb33c6c8f6f20213735cb19642c580a931c625ee377ee8bd39 numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl ac0280f1ba4a4bfff363a99a6aceed4f8e123f8a9b234c89140f5e894e452ecd numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl 879cf3a9a2b53a4672a168c21375166171bc3932b7e21f622201811c43cdd3b0 numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl f05d4198c1bacc9124018109c5fba2f3201dbe7ab6e92ff100494f236209c960 numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e2f085ce2e813a50dfd0e01fbfc0c12bbe5d2063d99f8b29da30e544fb6483b8 numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 92bda934a791c01d6d9d8e038363c50918ef7c40601552a58ac84c9613a665bc numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl ee4d528022f4c5ff67332469e10efe06a267e32f4067dc76bb7e2cddf3cd25ff numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl 05c076d531e9998e7e694c36e8b349969c56eadd2cdcd07242958489d79a7286 numpy-2.2.4-cp313-cp313t-win32.whl 188dcbca89834cc2e14eb2f106c96d6d46f200fe0200310fc29089657379c58d numpy-2.2.4-cp313-cp313t-win_amd64.whl 7051ee569db5fbac144335e0f3b9c2337e0c8d5c9fee015f259a5bd70772b7e8 numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl ab2939cd5bec30a7430cbdb2287b63151b77cf9624de0532d629c9a1c59b1d5c numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl d0f35b19894a9e08639fd60a1ec1978cb7f5f7f1eace62f38dd36be8aecdef4d numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b4adfbbc64014976d2f91084915ca4e626fbf2057fb81af209c1a6d776d23e3d numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl 9ba03692a45d3eef66559efe1d1096c4b9b75c0986b5dff5530c378fb8331d4f numpy-2.2.4.tar.gz ### [`v2.2.3`](https://github.com/numpy/numpy/releases/tag/v2.2.3): 2.2.3 (Feb 13, 2025) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.2...v2.2.3) ### NumPy 2.2.3 Release Notes NumPy 2.2.3 is a patch release that fixes bugs found after the 2.2.2 release. The majority of the changes are typing improvements and fixes for free threaded Python. Both of those areas are still under development, so if you discover new problems, please report them. This release supports Python versions 3.10-3.13. #### Contributors A total of 9 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - !amotzop - Charles Harris - Chris Sidebottom - Joren Hammudoglu - Matthew Brett - Nathan Goldbaum - Raghuveer Devulapalli - Sebastian Berg - Yakov Danishevsky + #### Pull requests merged A total of 21 pull requests were merged for this release. - [#​28185](https://github.com/numpy/numpy/pull/28185): MAINT: Prepare 2.2.x for further development - [#​28201](https://github.com/numpy/numpy/pull/28201): BUG: fix data race in a more minimal way on stable branch - [#​28208](https://github.com/numpy/numpy/pull/28208): BUG: Fix `from_float_positional` errors for huge pads - [#​28209](https://github.com/numpy/numpy/pull/28209): BUG: fix data race in np.repeat - [#​28212](https://github.com/numpy/numpy/pull/28212): MAINT: Use VQSORT_COMPILER_COMPATIBLE to determine if we should... - [#​28224](https://github.com/numpy/numpy/pull/28224): MAINT: update highway to latest - [#​28236](https://github.com/numpy/numpy/pull/28236): BUG: Add cpp atomic support ([#​28234](https://github.com/numpy/numpy/issues/28234)) - [#​28237](https://github.com/numpy/numpy/pull/28237): BLD: Compile fix for clang-cl on WoA - [#​28243](https://github.com/numpy/numpy/pull/28243): TYP: Avoid upcasting `float64` in the set-ops - [#​28249](https://github.com/numpy/numpy/pull/28249): BLD: better fix for clang / ARM compiles - [#​28266](https://github.com/numpy/numpy/pull/28266): TYP: Fix `timedelta64.__divmod__` and `timedelta64.__mod__`... - [#​28274](https://github.com/numpy/numpy/pull/28274): TYP: Fixed missing typing information of set_printoptions - [#​28278](https://github.com/numpy/numpy/pull/28278): BUG: backport resource cleanup bugfix from [gh-28273](https://github.com/numpy/numpy/issues/28273) - [#​28282](https://github.com/numpy/numpy/pull/28282): BUG: fix incorrect bytes to stringdtype coercion - [#​28283](https://github.com/numpy/numpy/pull/28283): TYP: Fix scalar constructors - [#​28284](https://github.com/numpy/numpy/pull/28284): TYP: stub `numpy.matlib` - [#​28285](https://github.com/numpy/numpy/pull/28285): TYP: stub the missing `numpy.testing` modules - [#​28286](https://github.com/numpy/numpy/pull/28286): CI: Fix the github label for `TYP:` PR's and issues - [#​28305](https://github.com/numpy/numpy/pull/28305): TYP: Backport typing updates from main - [#​28321](https://github.com/numpy/numpy/pull/28321): BUG: fix race initializing legacy dtype casts - [#​28324](https://github.com/numpy/numpy/pull/28324): CI: update test_moderately_small_alpha #### Checksums ##### MD5 9cd8b5e358f89016f403a6c1a27e7e87 numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl 2818f5a9efcfc3bb6bf657137df26046 numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl 6d65c6a336cfb69fe4ddd756cad73d55 numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl 7f4cf33c634b33f633d4bf47f560a86d numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl 3c04024badd42bfcc68c14f106efa93f numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 07658df1de0e1d3721de0aacff4313cd numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3e753fc4b7c879b29442ee9bab25eddd numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl d1811f1988d88b00825bc6e943d8e22d numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl b5fe91363c16001ea30cbd5befbb0555 numpy-2.2.3-cp310-cp310-win32.whl 44dfe1df1640e4fe762bedad57cd7165 numpy-2.2.3-cp310-cp310-win_amd64.whl 6156418f596620b00a3c221baef02476 numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl 97b925bac245aad1297d22ad3cfaa74c numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl 3f05819fcb71df1d3093e5d1c041a4e9 numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl f6763893ba9a5739fefa0929fd152db2 numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl e93cf6ed4e1a3f9a8009ee7f2fcb0da8 numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 851dcbcbe90212c385dcdac1614cca83 numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9b27cf1d6319f70370f4b0af10c03f5c numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl 28d20c95ff23d27ae639b4960df777ec numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl 559fefe30c0043a088adeca90231b382 numpy-2.2.3-cp311-cp311-win32.whl 5e32a1cc3dcfe729f675784a53e4d553 numpy-2.2.3-cp311-cp311-win_amd64.whl 12134dcf62b2bca2eeebb7bbc45c2a71 numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl c72318236531d3ca61d229eaf96f7d04 numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl 1b807acc844c2ba5be7bc7586d4a3a6b numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl 810d4908371bb2f08b0c7b16d3f05970 numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl bb918cedd0931cb68af9e77096dedf54 numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 92c6c6c5b22b207425b329f061bd18fa numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 10d48fb9d86280db1afe7224b15a51af numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl a73da0434a971b21d8a9c0596015d629 numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl c5f1e734c7d872e2f9af71d32e62d59c numpy-2.2.3-cp312-cp312-win32.whl 884c1a89844f539ab15b7016a43d231c numpy-2.2.3-cp312-cp312-win_amd64.whl 3a2de7f886cb756cf8d0375a36721926 numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl c1fe5b6a9015c2877647419caa009be0 numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl bb3f3a69219bbcdb719bbe38e4e69f79 numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl 8158c2e980a1cbfb4d98ff3a273bb2e9 numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl 4d3d9b0c14db955e4b1aa1a1971d2def numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6575308269513900c94803258b89ac83 numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 945b91c2093fed2a1f34597fc66e5a35 numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl c5867508607f75ed23426315a7ad86d7 numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl 5a1497c262d9aa52ce6859a12a54ebbc numpy-2.2.3-cp313-cp313-win32.whl 69c98e036d59eb74e4620c7649b5d7fc numpy-2.2.3-cp313-cp313-win_amd64.whl 2535d7c0f98ad848bcf1f48f7c358e41 numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl aea9afa69d510ce905b2b8dbf0e33a11 numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl cc5aceacd0a44a67cdd2cf8d5a446ca3 numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl 32eb2ed1e734ea26c90f75b1f5616564 numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl f1d85f322c3e85ef748c3e5594b94226 numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7f24ce01ad5c352c76614a12fa5e2319 numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 62841d4b49c5a0cef2c2ba26a16f6959 numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl d7b512f83999d05c47e55b931f2dcdfe numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl 1dca2f20e0accc1741e5fb233ecf7dff numpy-2.2.3-cp313-cp313t-win32.whl 347b71f0db5b49a25ef1ed677e47999b numpy-2.2.3-cp313-cp313t-win_amd64.whl 3615d13c8c14c323aeda1c07d5a7fd55 numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl f7d2ba950c5aa11c100bb6bf202d5799 numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl b4336174c843c4943084e17945cd1165 numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0d856a89e028c393f8125739c56591e0 numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl c6ee254bcdf1e2fdb13d87e0ee4166ba numpy-2.2.3.tar.gz ##### SHA256 cbc6472e01952d3d1b2772b720428f8b90e2deea8344e854df22b0618e9cce71 numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl cdfe0c22692a30cd830c0755746473ae66c4a8f2e7bd508b35fb3b6a0813d787 numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl e37242f5324ffd9f7ba5acf96d774f9276aa62a966c0bad8dae692deebec7716 numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl 95172a21038c9b423e68be78fd0be6e1b97674cde269b76fe269a5dfa6fadf0b numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl d5b47c440210c5d1d67e1cf434124e0b5c395eee1f5806fdd89b553ed1acd0a3 numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0391ea3622f5c51a2e29708877d56e3d276827ac5447d7f45e9bc4ade8923c52 numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f6b3dfc7661f8842babd8ea07e9897fe3d9b69a1d7e5fbb743e4160f9387833b numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl 1ad78ce7f18ce4e7df1b2ea4019b5817a2f6a8a16e34ff2775f646adce0a5027 numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl 5ebeb7ef54a7be11044c33a17b2624abe4307a75893c001a4800857956b41094 numpy-2.2.3-cp310-cp310-win32.whl 596140185c7fa113563c67c2e894eabe0daea18cf8e33851738c19f70ce86aeb numpy-2.2.3-cp310-cp310-win_amd64.whl 16372619ee728ed67a2a606a614f56d3eabc5b86f8b615c79d01957062826ca8 numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl 5521a06a3148686d9269c53b09f7d399a5725c47bbb5b35747e1cb76326b714b numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl 7c8dde0ca2f77828815fd1aedfdf52e59071a5bae30dac3b4da2a335c672149a numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl 77974aba6c1bc26e3c205c2214f0d5b4305bdc719268b93e768ddb17e3fdd636 numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl d42f9c36d06440e34226e8bd65ff065ca0963aeecada587b937011efa02cdc9d numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f2712c5179f40af9ddc8f6727f2bd910ea0eb50206daea75f58ddd9fa3f715bb numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c8b0451d2ec95010d1db8ca733afc41f659f425b7f608af569711097fd6014e2 numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl d9b4a8148c57ecac25a16b0e11798cbe88edf5237b0df99973687dd866f05e1b numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl 1f45315b2dc58d8a3e7754fe4e38b6fce132dab284a92851e41b2b344f6441c5 numpy-2.2.3-cp311-cp311-win32.whl 9f48ba6f6c13e5e49f3d3efb1b51c8193215c42ac82610a04624906a9270be6f numpy-2.2.3-cp311-cp311-win_amd64.whl 12c045f43b1d2915eca6b880a7f4a256f59d62df4f044788c8ba67709412128d numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl 87eed225fd415bbae787f93a457af7f5990b92a334e346f72070bf569b9c9c95 numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl 712a64103d97c404e87d4d7c47fb0c7ff9acccc625ca2002848e0d53288b90ea numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl a5ae282abe60a2db0fd407072aff4599c279bcd6e9a2475500fc35b00a57c532 numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl 5266de33d4c3420973cf9ae3b98b54a2a6d53a559310e3236c4b2b06b9c07d4e numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3b787adbf04b0db1967798dba8da1af07e387908ed1553a0d6e74c084d1ceafe numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 34c1b7e83f94f3b564b35f480f5652a47007dd91f7c839f404d03279cc8dd021 numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl 4d8335b5f1b6e2bce120d55fb17064b0262ff29b459e8493d1785c18ae2553b8 numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl 4d9828d25fb246bedd31e04c9e75714a4087211ac348cb39c8c5f99dbb6683fe numpy-2.2.3-cp312-cp312-win32.whl 83807d445817326b4bcdaaaf8e8e9f1753da04341eceec705c001ff342002e5d numpy-2.2.3-cp312-cp312-win_amd64.whl 7bfdb06b395385ea9b91bf55c1adf1b297c9fdb531552845ff1d3ea6e40d5aba numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl 23c9f4edbf4c065fddb10a4f6e8b6a244342d95966a48820c614891e5059bb50 numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl a0c03b6be48aaf92525cccf393265e02773be8fd9551a2f9adbe7db1fa2b60f1 numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl 2376e317111daa0a6739e50f7ee2a6353f768489102308b0d98fcf4a04f7f3b5 numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl 8fb62fe3d206d72fe1cfe31c4a1106ad2b136fcc1606093aeab314f02930fdf2 numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 52659ad2534427dffcc36aac76bebdd02b67e3b7a619ac67543bc9bfe6b7cdb1 numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1b416af7d0ed3271cad0f0a0d0bee0911ed7eba23e66f8424d9f3dfcdcae1304 numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl 1402da8e0f435991983d0a9708b779f95a8c98c6b18a171b9f1be09005e64d9d numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl 136553f123ee2951bfcfbc264acd34a2fc2f29d7cdf610ce7daf672b6fbaa693 numpy-2.2.3-cp313-cp313-win32.whl 5b732c8beef1d7bc2d9e476dbba20aaff6167bf205ad9aa8d30913859e82884b numpy-2.2.3-cp313-cp313-win_amd64.whl 435e7a933b9fda8126130b046975a968cc2d833b505475e588339e09f7672890 numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl 7678556eeb0152cbd1522b684dcd215250885993dd00adb93679ec3c0e6e091c numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl 2e8da03bd561504d9b20e7a12340870dfc206c64ea59b4cfee9fceb95070ee94 numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl c9aa4496fd0e17e3843399f533d62857cef5900facf93e735ef65aa4bbc90ef0 numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl f4ca91d61a4bf61b0f2228f24bbfa6a9facd5f8af03759fe2a655c50ae2c6610 numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl deaa09cd492e24fd9b15296844c0ad1b3c976da7907e1c1ed3a0ad21dded6f76 numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 246535e2f7496b7ac85deffe932896a3577be7af8fb7eebe7146444680297e9a numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl daf43a3d1ea699402c5a850e5313680ac355b4adc9770cd5cfc2940e7861f1bf numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl cf802eef1f0134afb81fef94020351be4fe1d6681aadf9c5e862af6602af64ef numpy-2.2.3-cp313-cp313t-win32.whl aee2512827ceb6d7f517c8b85aa5d3923afe8fc7a57d028cffcd522f1c6fd082 numpy-2.2.3-cp313-cp313t-win_amd64.whl 3c2ec8a0f51d60f1e9c0c5ab116b7fc104b165ada3f6c58abf881cb2eb16044d numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl ed2cf9ed4e8ebc3b754d398cba12f24359f018b416c380f577bbae112ca52fc9 numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 39261798d208c3095ae4f7bc8eaeb3481ea8c6e03dc48028057d3cbdbdb8937e numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 783145835458e60fa97afac25d511d00a1eca94d4a8f3ace9fe2043003c678e4 numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl dbdc15f0c81611925f382dfa97b3bd0bc2c1ce19d4fe50482cb0ddc12ba30020 numpy-2.2.3.tar.gz </details> --- ### Configuration 📅 **Schedule**: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined). 🚦 **Automerge**: Disabled by config. Please merge this manually once you are satisfied. ♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox. 🔕 **Ignore**: Close this PR and you won't be reminded about this update again. --- - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check this box --- This PR has been generated by [Renovate Bot](https://github.com/renovatebot/renovate). <!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiIzOS4yMTEuMCIsInVwZGF0ZWRJblZlciI6IjM5LjIxMS4wIiwidGFyZ2V0QnJhbmNoIjoibWFpbiIsImxhYmVscyI6W119--> Reviewed-on: #71 Co-authored-by: Renovate <renovate@csw.im> Co-committed-by: Renovate <renovate@csw.im> |
||
---|---|---|
.docs | ||
.forgejo | ||
.vscode | ||
antipolls | ||
aurora | ||
backup | ||
bible | ||
emojiinfo | ||
hotreload | ||
nerdify | ||
pterodactyl | ||
seautils | ||
.editorconfig | ||
.envrc | ||
.gitignore | ||
flake.lock | ||
flake.nix | ||
info.json | ||
LICENSE | ||
mkdocs.yml | ||
pyproject.toml | ||
README.md | ||
renovate.json | ||
uv.lock |
SeaCogs
My assorted cogs for Red-DiscordBot.
Developing
You'll need some prerequisites before you can start working on my cogs.
git - uv
Additionally, I recommend a code editor of some variety. Visual Studio Code is a good, beginner-friendly option.
Installing Prerequisites
This section of the guide only applies to Windows systems. If you're on Linux, refer to the documentation of the projects listed above. I also offer a Nix Flake that contains all of the required prerequisites, if you're a Nix user.
git
You can download git from the git download page.
Alternatively, you can use winget
:
winget install --id=Git.Git -e --source=winget
uv
You can install uv with the following Powershell command:
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
Alternatively, you can use winget
:
winget install --id=astral-sh.uv -e
Getting the Source Code
Once you have git
installed, you can use the git clone
command to get a copy of the repository on your system.
git clone https://c.csw.im/cswimr/SeaCogs.git
Then, you can use uv
to install the Python dependencies required for development.
uv sync --frozen